Domain kkrl.de kaufen?
Wir ziehen mit dem Projekt kkrl.de um. Sind Sie am Kauf der Domain kkrl.de interessiert?
Schicken Sie uns bitte eine Email an
domain@kv-gmbh.de oder rufen uns an: 0541-76012653.
Produkte zum Begriff Machine Learning:

Machine Learning für Zeitreihen
Machine Learning für Zeitreihen

- Konzepte Schritt für Schritt erklärt - Die Eigenarten von Zeitreihendaten verstehen: Zeitfenster zum Anlernen einsetzen; mit latenten, saisonalen und Trend-Komponenten arbeiten - Anleitungen zur Umsetzung in Python mit ausführlichen Code-Kommentaren - Mit TensorFlow2 Deep-Learning-Verfahren zur Prognose aufbauen, anlernen und produktiv einsetzen Daten über Vorgänge werden in der verarbeitenden Industrie, der Logistik oder im Finanzsektor im Sekundentakt aufgezeichnet: der Verlauf eines Aktienkurses, die Verkaufszahlen eines Produkts, die Sensordaten einer Turbine. Solche Daten informieren nicht nur über isolierte Zustände; sie sind wie Filme, die den Verlauf eines Vorgangs mit einer Serie einzelner Bilder nachzeichnen. Intelligente Algorithmen können die Muster dieser Verläufe analysieren, sie anlernen und über das Beobachtungsfenster hinaus fortschreiben: Zustände in der Zukunft werden prognostizierbar. Das Buch bietet eine leicht verständliche Einführung in die Konzepte und die Praxis der Zeitreihenanalyse. Es zeigt, wie bewährte und neuere Lernalgorithmen arbeiten und wie sie sich mit Python anlernen und produktiv einsetzen lassen. An einer Vielzahl von Anwendungsbeispielen werden die Vorbereitung der Daten, der Anlern- und Schätzprozess Schritt für Schritt erklärt. Aus dem Inhalt: - Zeitreihendaten mit pandas aufbereiten, fehlende Daten imputieren, mit Datumsangaben arbeiten - Grundprinzipien maschinellen Lernens: Konzepte und Umsetzung mit Python und Scikit-Learn - Feature-Preprocessing: Standardisierung, Dimensionsreduktion, Verarbeitung kategorialer Daten - ARIMA-Modelle zur Analyse univariater Zeitreihen: Vorbereitung, Anlernen und Prognose mit Python und Statsmodels - Komplexe Zeitreihen mit Deep-Learning-Verfahren analysieren: Rekurrente und konvolutionale Netze verstehen und mit Python und TensorFlow 2 aufbauen und anlernen - Mit Zeifenstern arbeiten Vorkenntnisse in Machine-Learning-Verfahren sind nicht notwendig. Grundlegende Statistik- und Python-Kenntnisse sollten vorhanden sein. Der komplette Code im Buch sowie die Beispieldateien sind über ein GitHub-Repository verfügbar. EXTRA: E-Book inside. Systemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions.

Preis: 39.99 € | Versand*: 0.00 €
Machine Learning for Astrophysics
Machine Learning for Astrophysics

Machine Learning for Astrophysics , Proceedings of the ML4Astro International Conference 30 May - 1 Jun 2022 , Bücher > Bücher & Zeitschriften

Preis: 130.97 € | Versand*: 0 €
Brown, Charles: Machine Learning
Brown, Charles: Machine Learning

Machine Learning , Develop Machine Learning Tools and Techniques (Deep Learning Models a Programmer's Guide to Artificial Intelligence) , Bücher > Bücher & Zeitschriften

Preis: 21.64 € | Versand*: 0 €
Econometrics with Machine Learning
Econometrics with Machine Learning

Econometrics with Machine Learning , This book helps and promotes the use of machine learning tools and techniques in econometrics and explains how machine learning can enhance and expand the econometrics toolbox in theory and in practice. Throughout the volume, the authors raise and answer six questions: 1) What are the similarities between existing econometric and machine learning techniques? 2) To what extent can machine learning techniques assist econometric investigation? Specifically, how robust or stable is the prediction from machine learning algorithms given the ever-changing nature of human behavior? 3) Can machine learning techniques assist in testing statistical hypotheses and identifying causal relationships in ¿big data? 4) How can existing econometric techniques be extended by incorporating machine learning concepts? 5) How can new econometric tools and approaches be elaborated on based on machine learning techniques? 6) Is it possible to develop machine learning techniques furtherand make them even more readily applicable in econometrics? As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in developing both disciplines of machine learning and econometrics in conjunction, rather than in isolation. This volume is a must-read for scholars, researchers, students, policy-makers, and practitioners, who are using econometrics in theory or in practice. , Bücher > Bücher & Zeitschriften

Preis: 125.70 € | Versand*: 0 €

Warum Deep Learning im Vergleich zu Machine Learning?

Deep Learning unterscheidet sich von Machine Learning durch seine Fähigkeit, automatisch Merkmale aus den Daten zu extrahieren, an...

Deep Learning unterscheidet sich von Machine Learning durch seine Fähigkeit, automatisch Merkmale aus den Daten zu extrahieren, anstatt dass diese manuell definiert werden müssen. Dadurch ist Deep Learning in der Lage, komplexere und abstraktere Muster in den Daten zu erkennen und zu lernen. Dies ermöglicht es Deep Learning-Modellen, in vielen Anwendungsbereichen, wie Bild- und Spracherkennung, bessere Leistungen zu erzielen als herkömmliche Machine Learning-Modelle.

Quelle: KI generiert von FAQ.de

Was ist Python Machine Learning?

Python Machine Learning bezieht sich auf die Verwendung von Python-Programmierung, um maschinelles Lernen zu implementieren. Dabei...

Python Machine Learning bezieht sich auf die Verwendung von Python-Programmierung, um maschinelles Lernen zu implementieren. Dabei werden Algorithmen und Modelle erstellt, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Python bietet eine Vielzahl von Bibliotheken wie Scikit-learn, TensorFlow und Keras, die das Entwickeln von Machine-Learning-Anwendungen erleichtern. Mit Python Machine Learning können komplexe Probleme gelöst und Muster in großen Datenmengen entdeckt werden.

Quelle: KI generiert von FAQ.de

Ist Machine Learning bereits künstliche Intelligenz?

Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen,...

Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Künstliche Intelligenz umfasst jedoch auch andere Bereiche wie Expertensysteme, natürliche Sprachverarbeitung und Robotik.

Quelle: KI generiert von FAQ.de

Was ist der Unterschied zwischen Deep Learning und Machine Learning?

Deep Learning ist eine spezielle Methode des Machine Learning, die auf künstlichen neuronalen Netzwerken basiert. Es ermöglicht da...

Deep Learning ist eine spezielle Methode des Machine Learning, die auf künstlichen neuronalen Netzwerken basiert. Es ermöglicht das Lernen von hierarchischen und komplexen Merkmalsdarstellungen, um automatisch Muster und Strukturen in Daten zu erkennen. Im Gegensatz dazu ist Machine Learning ein breiterer Begriff, der verschiedene Algorithmen und Techniken umfasst, um Computermodelle zu erstellen, die aus Daten lernen und Vorhersagen treffen können. Deep Learning ist also eine Teilmenge des Machine Learning.

Quelle: KI generiert von FAQ.de
Krauss, Michael: Machine Learning
Krauss, Michael: Machine Learning

Machine Learning , Study Deep Learning Through Data Science (Step by Step Guide to Machine Learning Techniques for Beginners) , Bücher > Bücher & Zeitschriften

Preis: 20.04 € | Versand*: 0 €
Jones, Mike: Machine Learning
Jones, Mike: Machine Learning

Machine Learning , Bücher > Bücher & Zeitschriften

Preis: 14.70 € | Versand*: 0 €
Human And Machine Learning  Gebunden
Human And Machine Learning Gebunden

With an evolutionary advancement of Machine Learning (ML) algorithms a rapid increase of data volumes and a significant improvement of computation powers machine learning becomes hot in different applications. However because of the nature of ¿black-box¿ in ML methods ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation explanation trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning visual explanation of ML processes algorithmic explanation of ML models human cognitive responses in ML-based decision making human evaluation of machine learning and domain knowledge in transparent ML applications. This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms resulting in the overall advancement of ML but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making. This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence decision support systems and human-computer interaction.

Preis: 106.99 € | Versand*: 0.00 €
Ensemble Machine Learning  Kartoniert (TB)
Ensemble Machine Learning Kartoniert (TB)

The primary goal of this book is to give readers a complete treatment of the state-of-the-art ensemble learning methods. It also provides a set of applications that demonstrate the various usages of ensemble learning methods in the real-world.

Preis: 246.09 € | Versand*: 0.00 €

Ist AWS der Standard im Machine Learning?

AWS ist einer der führenden Anbieter von Cloud-Computing-Diensten, einschließlich Machine Learning. Es bietet eine breite Palette...

AWS ist einer der führenden Anbieter von Cloud-Computing-Diensten, einschließlich Machine Learning. Es bietet eine breite Palette von ML-Diensten und Tools wie Amazon SageMaker und Amazon Rekognition, die von vielen Unternehmen genutzt werden. Obwohl AWS als Standard angesehen werden kann, gibt es auch andere Anbieter wie Google Cloud und Microsoft Azure, die ebenfalls starke ML-Funktionen bieten. Die Wahl des richtigen Anbieters hängt von den spezifischen Anforderungen und Präferenzen des Unternehmens ab.

Quelle: KI generiert von FAQ.de

Ist ein Machine Learning Engineer ein Ingenieur?

Ja, ein Machine Learning Engineer ist ein Ingenieur. Sie haben in der Regel einen technischen Hintergrund und arbeiten an der Entw...

Ja, ein Machine Learning Engineer ist ein Ingenieur. Sie haben in der Regel einen technischen Hintergrund und arbeiten an der Entwicklung und Implementierung von Machine Learning-Modellen und -Algorithmen. Sie nutzen ihre technischen Fähigkeiten, um Daten zu analysieren, Modelle zu trainieren und Lösungen für komplexe Probleme zu entwickeln.

Quelle: KI generiert von FAQ.de

Kennt sich jemand mit Machine Learning aus?

Ja, es gibt viele Menschen, die sich mit Machine Learning auskennen. Machine Learning ist ein Teilgebiet der künstlichen Intellige...

Ja, es gibt viele Menschen, die sich mit Machine Learning auskennen. Machine Learning ist ein Teilgebiet der künstlichen Intelligenz, das sich mit der Entwicklung von Algorithmen und Modellen befasst, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen oder Entscheidungen zu treffen. Es gibt viele Experten und Forscher, die sich intensiv mit Machine Learning beschäftigen und in verschiedenen Bereichen wie der Medizin, der Finanzwelt oder der Robotik Anwendungen entwickeln.

Quelle: KI generiert von FAQ.de

Wie kann man einen Einstieg in Machine Learning finden?

Um einen Einstieg in Machine Learning zu finden, empfiehlt es sich, grundlegende Kenntnisse in Mathematik und Statistik zu erwerbe...

Um einen Einstieg in Machine Learning zu finden, empfiehlt es sich, grundlegende Kenntnisse in Mathematik und Statistik zu erwerben. Anschließend kann man sich mit den verschiedenen Algorithmen und Techniken des Machine Learning vertraut machen, indem man Bücher liest, Online-Kurse besucht oder an Projekten arbeitet. Es ist auch hilfreich, praktische Erfahrungen zu sammeln, indem man eigene Daten analysiert und Modelle trainiert.

Quelle: KI generiert von FAQ.de
Arduino Tiny Machine Learning Kit
Arduino Tiny Machine Learning Kit

Tiny Machine Learning Kit: Innovatives Lernpaket für maschinelles Lernen mit Arduino Das Tiny Machine Learning Kit, kombiniert mit den spannenden Kursen TinyML Applications und Deploying TinyML on Microcontrollers , die Teil der Tiny Machine Learning (TinyML) Spezialisierung von EdX sind, versorgt Sie mit allen Werkzeugen, die Sie benötigen, um Ihre ML-Visionen zum Leben zu erwecken! Das Kit besteht aus einem leistungsstarken Board mit einem Mikrocontroller und einer Vielzahl von Sensoren (Arduino Nano 33 BLE Sense). Das Board kann Bewegung, Beschleunigung, Rotation, barometrischen Druck, Geräusche, Gesten, Nähe, Farbe und Lichtintensität erfassen. Das Kit enthält auch ein Kameramodul (OV7675) und ein benutzerdefiniertes Arduino-Shield, um Ihre Komponenten einfach anzuschließen und Ihr eigenes einzigartiges TinyML-Projekt zu erstellen. Sie k...

Preis: 59.90 € | Versand*: 4.95 €
Dataset Shift in Machine Learning
Dataset Shift in Machine Learning

Dataset Shift in Machine Learning , Bücher > Bücher & Zeitschriften

Preis: 33.50 € | Versand*: 0 €
Machine Learning in Clinical Neuroscience
Machine Learning in Clinical Neuroscience

Machine Learning in Clinical Neuroscience , Foundations and Applications , Bücher > Bücher & Zeitschriften

Preis: 142.63 € | Versand*: 0 €
Machine Learning in Clinical Neuroscience
Machine Learning in Clinical Neuroscience

Machine Learning in Clinical Neuroscience , Foundations and Applications , Bücher > Bücher & Zeitschriften

Preis: 103.23 € | Versand*: 0 €

Welche Grafikkarte ist für KI und Machine Learning geeignet?

Eine Grafikkarte, die für KI und Machine Learning geeignet ist, sollte über eine hohe Rechenleistung und Speicherbandbreite verfüg...

Eine Grafikkarte, die für KI und Machine Learning geeignet ist, sollte über eine hohe Rechenleistung und Speicherbandbreite verfügen. Beliebte Optionen sind die NVIDIA GeForce RTX- oder die NVIDIA Tesla-Serie, da sie speziell für diese Anwendungen optimiert sind. Es ist auch wichtig, auf die CUDA-Kerne und den VRAM der Grafikkarte zu achten, da dies die Leistung bei KI- und Machine Learning-Aufgaben beeinflusst.

Quelle: KI generiert von FAQ.de

Hat Machine Learning wirklich etwas mit künstlicher Intelligenz zu tun?

Ja, Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Model...

Ja, Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen oder Entscheidungen zu treffen. Machine Learning ist eine Methode, um künstliche Intelligenz zu erreichen, indem Computer in der Lage sind, Aufgaben zu erlernen und auszuführen, für die normalerweise menschliche Intelligenz erforderlich ist.

Quelle: KI generiert von FAQ.de

Wie hoch ist der Tarif eines Programmierers als Machine Learning Freelancer?

Der Tarif eines Programmierers als Machine Learning Freelancer kann stark variieren und hängt von verschiedenen Faktoren ab, wie z...

Der Tarif eines Programmierers als Machine Learning Freelancer kann stark variieren und hängt von verschiedenen Faktoren ab, wie zum Beispiel der Erfahrung des Programmierers, der Komplexität des Projekts und der Dauer des Engagements. In der Regel können die Stundensätze für erfahrene Machine Learning Freelancer zwischen 50 und 200 Euro liegen. Es ist jedoch wichtig zu beachten, dass diese Preise nur als grobe Richtlinie dienen und je nach individueller Vereinbarung und Verhandlungsbasis variieren können.

Quelle: KI generiert von FAQ.de

Welchen Abschluss benötigt man, um eine Machine Learning Engineerin zu werden?

Um eine Machine Learning Engineerin zu werden, benötigt man in der Regel einen Bachelor- oder Masterabschluss in Informatik, Mathe...

Um eine Machine Learning Engineerin zu werden, benötigt man in der Regel einen Bachelor- oder Masterabschluss in Informatik, Mathematik, Statistik oder einem ähnlichen Fachgebiet. Zusätzlich ist es von Vorteil, Erfahrungen in den Bereichen Datenanalyse, Programmierung und maschinelles Lernen zu haben. Es gibt jedoch auch alternative Bildungswege, wie zum Beispiel Bootcamps oder Online-Kurse, die praktische Kenntnisse in Machine Learning vermitteln können.

Quelle: KI generiert von FAQ.de

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.